Math 564: Real analysis and measure theory Lecture 12

Pushforward measures.

Def. let (X, \mathcal{I}) and (Y, \mathcal{I}) be measurable spaces and let μ be a measure on \mathcal{I} .

Let $f: X \to Y$ be an (X, \mathcal{I}) -measurable function. Then the f-pushforward of μ is the measure $f_{**}\mu$ (also $\mu f'$) on \mathcal{I} defined by: for $\mathcal{I} \in \mathcal{I}$, $f_{**}\mu(\mathcal{I}) := \mu(f^{-r}(\mathcal{I})).$

Examples. (a) Let $S' \subseteq C$ denote the unit circle, which is usually considered a george under complex unstiplication. This is identified with the group (IR/Z, +) as follow: $IR/Z \cong [0,1)$ since [0,1) is a transversal for the usef excel of $Z \subseteq IR$. Define $f: [0,1) \rightarrow S'$ by $x \mapsto e^{2\pi i x}$, which is a group isonorphism $(IR/Z, +) \xrightarrow{\sim} (S', \cdot)$. Then $f_{\pm} \lambda$ is a Borel measure on S'.

(b) Let IR, be the georp of positive reals under . Consider $f: |R \rightarrow |R > 0$ by $x \mapsto e^x$ and take the push forward measure $f_*\lambda$. In particular, for $(a, b) \subseteq IR > 0$, $\{a, b\} = \lambda ((\log a, \log b)) = \log b - \log a$.

Def. let (X, I, p) be a measure space.

- o For an (I, I)-mecsurable faction f: X -> X, we say that p is f-invariant or that

 f prexerves p if for p, i.e. p(B) = p(for (B)) for all B of I,
- o For a group action (>> X such that each group element acts as an (\$\overline{x}, T)-near.

 function, we say let \$\mu\$ is \$\bullet\$-invariant of \$\bullet\$ preserves \$\mu\$ if too each \$\bullet\$ \$\bullet\$,

 \$\bullet\$_\text{\$\pi\$} \mu = \mu\$.

Example. Let s: A" > A" be the letter lift map, i.e. (xu) new -> (xnx1) new. Any Berwalli

measure $v^{(N)}$ is shift-invariant: indled, it suffices to check or cylindres [w]: $s^{-1}([w]) = \bigcup_{\alpha \in A} [\alpha w]$, so $v^{(N)}([w]) = \sum_{\alpha \in A} v^{(N)}([\alpha w]) = \sum_{\alpha \in A} v^{(N)}([\omega]) = v^{(N)}([w])$.

A topological jour is a grouph equipped with topology waking undiplication and inverse whitnows. A Borel necessary on a is called left-invariant (asp. right-invariant) if it is invacined under the left-translation (resp. right-translation) action and inverse $\mu(g-B) = \mu(g)$ (resp. $\mu(g-g) = \mu(g)$).

Theorem (Haar). Every locally compact (Harrdorff) group admits a unique (up to sucting) heally finite left-invariant Bonel measure (also a right-invariant Bonel measure).

(I finite on compact subs) This measure is called a left Hour measure (resp. right Hage measure).

Examples. (a) For (Rd, +), lebergue measure is a Hans measure.

- (6) For IRro, .), The push forward of Lebesgue by x to ex: R -> R>0 is a Hear necessare been this function is a topological group isom. and Lebesgue is Haar for (R,t).
- (c) For (S',.), the pushforward of lebesque by x x 2 trix: [0,1) -> S' is a Haar measure because this function is a topological group isomorphism and lebesque measure is a Haar measure on R/Z = [0,1). Note that this necessare is a probability measure, here this is the unique probability there necessare.
- (d) Consider the group $(\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}} \cong \mathbb{Z}^{\mathbb{N}}$ as a warpact group with the same topol-as $\mathbb{Z}^{\mathbb{N}}$, under wooddincterise addition and \mathbb{Z} . The Bernoulli($\frac{1}{2}$) nearer is the Haar probability neares on $(\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$. In identically, this is also the pushforward of labergue on $(\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ by $f: (0,1) \to \mathbb{Z}^{\mathbb{N}} \cong (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ by $f: (0,1) \to \mathbb{Z}^{\mathbb{N}} \cong (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ by $f: (0,1) \to \mathbb{Z}^{\mathbb{N}} \cong (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ by $f: (0,1) \to \mathbb{Z}^{\mathbb{N}} \cong (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$

Nonexample. The group Chu(IR) of all invertible real matrices under unliplication is locally super when viewed as a subset of IRⁿ²: included, Me Chu(IR) <=> def(M) ≠ 0, and the latter is an open subset of IRⁿ². Further more, its complement, the det = 0 set, is "lower dimensional" dosed set, and one can show that it's un'll, to Chu(IR) is a labestace would open subset of IRⁿ². However, lebestyne measure on Chu(IR) is not a Haar measure like left nor right) because for example multiplication by (²²2.0) scales the lebestyne measure by 2. The Haar measure on Chu(IR) is defined using the Jacobian, i.e. integral with left in it.

We showed that translation autions Q IR and E(2/27) "IT 2/22 are egodic, and one can also similarly show that for an irrational he RICh, the rotation by 217% on S' is ergodic, which is the same as the translation action of the (dense) subgroup < e²⁷ix > ES' on S'. The following shows that this is a peneral phenomenon:

Theorem, let h be a locally compact (Handborff) group and TEh be a deuse subgroup.
Then the left) translation action T >> h is ergodic with respect to any Haar-measure.

Borel/measure is onorphism theorems.

The following is one of the basic theorems in descriptive set theory, which is asset by mathematicians leg, ergodic theorists and probability theorists) all the time without mention.

Bord ironorphism thronen. Any two width Polish spaces are Bord isomorphic, i.e. 3 f: X -> Y a bijection s.t. faul for are Bord.

Proofesketch. For an next) Polish you X, it's exough to show that X is Borel

is enough to show that I Bonel 2'N Co X and X co 2'N. The tirst is called the Contor-Bendixson theorem: for each mult Polish X, there is a working a modeling 2'N co X.

lemma binary representation). Any 2rd ettpl metric space X admits a Bonel b: X cs 2"N

which we call a binary representation map.

Proof. Let (Un) be a clid basis for X, so it separates points.

Then define $b: X \to 2^{(N)}$ by $x \mapsto (1_{u}|x))_{u \in \mathbb{N}}$. To check that b is Bond, it is anough to observe that $b^{-1}(V_n) = U_n$ is Bond, where $V_n := \{x \in 2^{(N)} : x(n) = 1\}$, because $\{V_n\}$ generates $B(2^{(N)})$ (include, each cylinder in $2^{(N)}$ is a finite intersection of these V_n and their complents).

This knights the sketch of Bosel isom. theorem.

Det A measurable space (X, \mathcal{I}) is called a standard Bonel space if there is a Polish metric on X such that $\mathcal{I} = \mathcal{B}(X)$. In other words, X was a Polish space, but we torget its topology and only kept the Bonel σ -algebra.

Mus lu Borel ison. Mevren sags that there is only one (up to isomorphism)

Det. Let (X, \mathcal{I}, μ) and (Y, \widetilde{J}, ν) be measure spaces. A function $f: X \to Y$ is called a measure isomorphism if Mure are would sets $X' \subseteq X$ and $Y' \subseteq Y$ such that $(F|_{X'}): X' \to Y'$ is a bijection subthat $(f|_{X'})$ is $(\widetilde{I}, \widetilde{J})$ -neasurable and $f_{\#}\mu = \nu$.

